Przepis na kryształ! W czym są kryształy?
Metoda Czochralskiego polega na bardzo ostrożnym „wyciąganiu” monokryształów z roztopionej substancji za pomocą pręta dotykającego jej powierzchni. Można ją stosować do wszystkich materiałów, których cząsteczki nie rozpadają się podczas podgrzewania i topnienia. Otrzymane dzięki metodzie Czochralskiego monokryształy cechują się wysoką czystością i jednorodnością.
Jak metoda Czochralskiego wygląda w praktyce? Zobaczmy na przykładzie monokryształów krzemu, które każdy z nas ma przy sobie w odtwarzaczach MP3, telefonach komórkowych, zegarkach czy kartach kredytowych.
Wytwarzanie monokryształów metodą Czochralskiego odbywa się w piecach do monokrystalizacji. We wnętrzu takiego pieca, w atmosferze chemicznie obojętnego argonu, umieszcza się tygiel wykonany z krzemionki, czyli tlenku krzemu (SiO2). Materiał tygla jest dobrany nieprzypadkowo. Chodzi o to, żeby w wysokiej temperaturze do znajdującego się w tyglu roztopionego krzemu (Si) nie przenikały atomy obcych pierwiastków (w praktyce nawet tlen w krzemionce jest źródłem wielu problemów).
Gdy piec nagrzeje się do nieco ponad 1400 stopni Celsjusza i krzem w tyglu zmieni się w ciecz, do jej powierzchni zostaje dosunięty cienki pręt z monokryształu krzemu. Pełni on rolę zarodka, wokół którego stopniowo osadzają się atomy cieczy. Dobierając odpowiednio szybkość wyciągania zarodka z wnętrza tygla, prędkość obracania pręta, temperaturę, a nawet skład i ciśnienie atmosfery wewnątrz pieca – można precyzyjnie sterować procesem wzrostu kryształu.
Rosnący kryształ jest stale ważony za pomocą czułych wag elektronicznych, a specjalne oprogramowanie cały czas monitoruje tempo wzrostu. Jeśli kryształ przyrasta zbyt szybko, można temu zaradzić podwyższając temperaturę pieca, co zmniejsza lepkość cieczy i obniża tempo przyrostu. Specjalny układ chłodzenia zapewnia, że temperatura nie będzie też zbyt wysoka. Sterowane komputerowo silniki krokowe gwarantują z kolei właściwą prędkość wysuwania pręta z tygla, co ma wpływ na średnicę powstającego kryształu. Atomy płynnej substancji w tyglu muszą mieć czas, by trafić we właściwe miejsce w sieci krystalicznej rosnącego zarodka. Jeśli zarodek jest wyciągany zbyt szybko, struktura krystaliczna będzie mieć liczne defekty, a w skrajnych przypadkach może się w ogóle nie wytworzyć.
Kryształy krzemowe rosną bardzo szybko: 1 m kryształu powstaje w zaledwie 30 godzin. Inne półprzewodniki tworzą kryształy wolniej, zwykle w tempie ok. 10 cm na dobę. Z kolei monokryształy tlenkowe przyrastają niewiele ponad 10 cm na tydzień. Nic dziwnego, że przy tak wolnych procesach piece z rosnącymi kryształami są zabezpieczane przed drganiami podłoża i wyposażane w zasilacze, pozwalające zachować ciągłość procesu nawet podczas przerw w dopływie prądu z elektrowni.
Pierwsze kryształy wytworzone przez prof. Czochralskiego przypominały metalowe druty: miały milimetr średnicy i długość do półtora metra. Dziś za pomocą metody Czochralskiego produkuje się przede wszystkim kryształy z krzemu i związków półprzewodnikowych. Te pierwsze mogą mieć nawet ponad dwa metry długości, średnicę zbliżoną do pół metra i masę kilkuset kilogramów. Inne kryształy są zwykle znacznie mniejsze. Na przykład monokryształy tlenkowe mają do 10 cm długości, a ich średnice nie przekraczają 5 cm. Kryształy ze szczególnie rzadkich i/lub trudnych w obróbce materiałów wymagają hodowania w specjalnie zmodyfikowanych piecach. Maleńkie, lecz niezwykle cenne kryształy Czochralskiego wyciąga się wtedy z… pojedynczych kropel lewitujących w polu magetycznym.
Wyhodowany kryształ krzemu jest poddawany obróbce. Najpierw nadaje mu się postać walca o dopasowanej do wymogów linii przemysłowych średnicy, po czym tnie się na płytki. Po wypolerowaniu płytki stają się idealnym materiałem do budowy elementów elektronicznych. W przypadku kryształów krzemu płytki mają zazwyczaj średnice 20-30 cm, a niedługo powinny się one zwiększyć nawet do 45 cm. Przy związkach półprzewodnikowych średnice są mniejsze, od 5 do 15 cm, gdyż kryształy są trudniejsze do wyhodowania.
Najczystsze chemicznie fragmenty kryształów, o najdoskonalszej strukturze krystalicznej, są wycinane i używane jako zarodki przy wytwarzaniu kolejnych kryształów. Proces otrzymywania kryształów jak najwyższej jakości przypomina więc prawdziwą hodowlę.
Metoda Czochralskiego stała się fundamentem współczesnego przemysłu elektronicznego. Ocenia się, że aż 90% urządzeń półprzewodnikowych powstaje właśnie dzięki niej. W Polsce na największą skalę metodę wykorzystuje Instytut Technologii Materiałów Elektronicznych w Warszawie. Znaczenie wynalazku jest ogromne i wciąż wzrasta. Świadczy o tym fakt, że liczba publikacji naukowych odwołujących się do pracy prof. Czochralskiego w ostatniej dekadzie wzrosła niemal dwukrotnie, a liczba cytowań – niemal trzykrotnie. Prof. Czochralski wciąż jest najczęściej cytowanym polskim uczonym.
Gdzie można znaleźć kryształy wyhodowane metodą Czochralskiego?
Na słowa „metoda Czochralskiego” niejeden lekceważąco wzruszy ramionami. „Też coś! To przecież tylko jakieś tam kryształy!”. Tak, ale bez tych kryształów elektronika nigdy nie stałaby się powszechna. Komputery nadal byłyby maszynami ważącymi tony, zajmującymi całe pokoje, żrącymi prąd godny małych elektrowni i tak drogimi i awaryjnymi, że byłoby ich co najwyżej kilka na kraj. Na szczęście teraz elektronika jest już wszędzie. Mogła stać się popularna, bo dzięki kryształom Czochralskiego wyprodukowanie jednego tranzystora jest dziś tańsze od wydrukowania jednej litery w książce.
Wartość światowego rynku elektroniki i powiązanych z nią usług jest szacowana na wiele bilionów dolarów rocznie. Aż 90% tego rynku funkcjonuje dzięki monokryształom krzemu wytwarzanym metodą Czochralskiego!
Od elektroniki zależy dziś cała cywilizacja. Nasza wygoda, rozrywka, praca, a nawet bezpieczeństwo. Elektronika, a wraz z nią kryształy wyhodowane metodą Czochralskiego, jest w zegarkach, telefonach, odtwarzaczach MP3, nawigacji GPS, w telewizorach, cyfrowych aparatach fotograficznych, kuchenkach mikrofalowych, pralkach i lodówkach, dekoderach telewizyjnych, konsolach do gier, telewizorach, a nawet w naszych kartach kredytowych i rowerach (w diodach świecących ich lamp). Steruje ruchem samochodów i pociągów, utrzymuje w powietrzu samoloty. Pozwala chronić majątek, walczy o zdrowie i życie pacjentów w szpitalach. Lecz przede wszystkim elektronika – a wraz z nią kryształy Czochralskiego – to jądro smartfonów, tabletów, laptopów i wszelkich komputerów, które są siłą napędową niemal każdej dziedziny życia współczesnego człowieka.
Elektronika konsumencka korzysta z monokryształów krzemu. Nie są to jedyne kryształy otrzymywane metodą Czochralskiego. Powstają dzięki niej na przykład kryształy piezoelektryczne (w których naprężenia mechaniczne prowadzą do gromadzenia się ładunku elektrycznego) i akustooptyczne (np. z dwutlenku telluru; pod wpływem fal dźwiękowych zmieniają one własności światła laserowego). Te z kryształów Czochralskiego, które wykazują tzw. własności nieliniowe, są kluczowym elementem wielu układów optycznych, od laserów wielkich mocy po sprzęt przeznaczony do kryptografii kwantowej. Kryształy z fosforku indu znajdują zastosowania w optoelektronice, m.in. przy produkcji laserów półprzewodnikowych i detektorów dalekiej podczerwieni. Kryształy antymonku galu i antymonku indu to z kolei świetne materiały na nie tylko na detektory podczerwieni, ale i ultrafioletu. Zbudowane dzięki nim urządzenia mogą w przyszłości pomagać na przykład strażakom w ocenie rodzaju płonących substancji.
Monokryształy z odpowiednich związków są używane jako podłoża pod wysokotemperaturowe warstwy nadprzewodników lub pod warstwy arsenku galu. Natomiast kryształy samego arsenku galu są postrzegane przez wielu jako następcy krzemu w elektronice. Już dziś wiele urządzeń mikrofalowych i optoelektronicznych działa dzięki kryształom GaAs. Ale metoda Czochralskiego przydaje się także w badaniach nad spintroniką, dziedziną nauki i techniki uważaną za następczynię elektroniki. Nadzieję na zastosowania spintroniczne budzą m.in. monokryształy niektórych związków międzymetalicznych.
We wskaźnikach laserowych i mikrolaserach są używane m.in. kryształy wanadianu itru domieszkowanego neodymem. Odpowiednio domieszkowane granaty itrowo-glinowe to kluczowy element nowoczesnego sprzętu telekomunikacyjnego. W holografii do zapisywania i wzmacniania obrazu używa się kryształów niobianu wapniowo-barowego. Z fosforku galu wykonuje się soczewki o unikatowych własnościach. Z kolei monokryształy z grupy perwoskitów, domieszkowane jonami ceru, pod wpływem promieniowania gamma generują błyski światła. Własność ta ma kluczowe znaczenie w detektorach tomografów PET, które są jednymi z najdoskonalszych narzędzi obrazowania wnętrza ludzkiego ciała. Natomiast odpowiednio domieszkowane kryształy granatów są świetnym materiałem na lasery medyczne – idealnie sterylne skalpele, dzięki którym można przeprowadzać bezpieczne i niemal bezkrwawe operacje, zarówno chirurgiczne, jak i kosmetyczne.
Dzięki komputerom i internetowi świat staje się globalną wioską. Lecz tak naprawdę przekształca się w nią dzięki kryształom Czochralskiego. Bez nich nie moglibyśmy nawet marzyć o efektywnej interakcji między ludźmi rozsianymi po wszystkich kontynentach – interakcji pozwalającej wspólnie realizować wielkie projekty biznesowe i naukowe, przede wszystkim zaś zdolnej przełamywać uprzedzenia historyczne i ideologiczne. Dzięki metodzie pewnego profesora z Kcyni świat powoli staje się coraz bardziej spójną całością.
Największym kryształem Czochralskiego.
Źróło: http://www.inmat.pw.edu.pl/
–1 Komentarz–
[…] Więcej o Janie Czochralskim znajdziecie TUTAJ. A o metodzie Czochralskiego i monokryształach TUTAJ. […]